

Gold discovery at Adzope Project in Côte d'Ivoire Maiden drilling program at King Kong returns 17m at 7.5g/t gold

- Maiden drilling program confirms the potential for the King Kong prospect on the Adzope gold project in southern Côte d'Ivoire to host a significant high-grade gold system
- Reconnaissance diamond drilling program comprising nine holes for 1,714.4m tested targets along a northeast-southwest anomalous corridor over +3.0km defined by a coincidental geophysics and gold-in-soil anomaly -
 - Discovery hole 24ADDD007 returned 17m at 7.5g/t gold from 262m downhole, approximately 190m below surface
 - All holes intersected gold mineralisation using a cut-off of 0.5g/t gold
- Interpreted high-grade gold corridor trends northeast-southwest over a strike length of at least
 3.0km based upon drilling, artisanal pits, ground geophysics and soil sampling
- Next phase of exploration to include further diamond drill-testing of the King Kong gold system planned to commence in Q1, 2025,

Desert Metals Limited (Desert Metals, DM1, or the **Company**) is delighted to report results from the **first-ever** drilling program conducted at the **King Kong prospect** on the lead **Adzope gold project** in southern Côte d'Ivoire. **Diamond drilling** at the King Kong gold prospect, located in the northeastern corner of the Adzope exploration licence has returned multiple high-grade gold results including a **discovery hole intercept of 17m at 7.5g/t gold, including 5m at 23.1g/t gold,** and a further **13m at 1.64g/t gold** in a second hole **1.4km along strike** on **the same interpreted structure**. See Figure 1 and Figure 3.

Desert Metals Managing Director Stephen Ross said:

"I am thrilled that the first-ever drilling campaign at King Kong has returned significant and high-grade gold intercepts. The drilling results support our strong belief that the Adzope gold project hosts substantial gold mineralisation. Single reconnaissance holes were drilled next to artisanal pits mined for gold or on a coincidental geophysical and gold-in-soil anomaly, so for these holes to return thick and high-grade intercepts is extremely encouraging. We believe these results indicate the presence of significant high-grade gold mineralisation in the immediate area.

The King Kong gold prospect contains a +3.0km interpreted gold corridor plus 2.1km of untested, crosscutting artisanal gold workings at an area known as the Beach. This first-pass drilling has confirmed King Kong's potential and provided us with strong signatures of where to drill next and where not to drill, so we look forward to the upcoming exploration programs in 2025. "

Figure 1 – King Kong Diamond Drilling Plan

Desert Metals drilled **9 diamond drill holes** ranging in length from **132m to 336m** for a total of **1,714.4m** over a strike length of **+3.0km**. This maiden drilling program at the King Kong prospect intersected oregrade gold mineralisation in holes **24ADDD006 and 24ADDD007**, which are situated **1.4km apart** on the same interpreted structure. These intercepts have confirmed for the first time that significant gold mineralisation occurs at Adzope where sulphide minerals, alteration, and quartz veining exist within the northeast-southwest structures. See Figure 2, showing visible gold in hole 24ADDD007.

The drilling was designed to test (i) coincidental chargeable geophysical and gold-in-soil anomalies) and; (ii) interpreted zones of gold mineralisation mined by artisanal workers. **This is the first time these areas have ever been drill-tested**.

A +3.0km chargeable zone with coincidental gold-in-soil anomalism hosts the two holes that yielded the best results (holes 006 and 007). Hole 004 in a similar location still yielded gold intersections despite being much shallower and drilled at 90° to the discovery holes. Drilling also tested, via single reconnaissance holes, a series of pits trending southwest from an area of extensive alluvial gold workings known as "the Beach" in the northeast corner of the Adzope gold permit (holes 001, 002, 003 and 008).

There is a strong correlation between mineralisation, chargeability, and gold-in-soil anomalies, which will help with targeting future drilling programs. This **+3.0km zone**, plus the **+2.1km cross-cutting artisanal Beach zone**, which remains untested, will be the focus of further geophysics, auger sampling, and diamond drilling in **Q1 2025**.

Table 1 – King Kong diamond drilling selected high-grade significant intercepts					
Hole ID	From m	To m	Interval m	Au g/t	Gram x Metre
24ADDD003	35	38.4	3.4	1.73	5.88
24ADDD004	67	71	4	1.14	4.56
24ADDD006	146	159	13	1.64	21.32
including	151	155	4	3.76	15.04
24ADDD007	262	279	17	7.5	126.7
including	262	267	5	23.1	115.45
24ADDD007	277	280	3	1.90	5.7
Significant intercepts were calculated with a minimum thickness of 3m using a 0.5g/t gold cut-off					
and 3m of internal waste					

See Table 1 for selected significant results and Tables 2 and 3 for all results.

Figure 2 – Hole 24ADDD007 7 252.72m to 279.56m including visible gold

Adzope Gold Project Exploration Program 2025

Exploration programs for the+3.0 km-long gold anomalous corridor are currently being planned. These programs will include dipole-dipole ground geophysics to better resolve the mineralised lodes in 3D in the 1.4km between holes 24ADDD006 and 24ADDD007, auger drilling and further diamond drilling. In addition, gradient array IP surveys will be conducted along strike from King Kong to the southwest to track the continuity of the mineralisation. A program of regional stream sediment sampling will also be undertaken across the entire permit.

Figure 3 – Desert Metals project locations and Côte d'Ivoire Geology

This Announcement has been approved for release by the Board of Desert Metals Limited.

For further information contact:

Stephen Ross Managing Director

P +61 8 9383 9997E stephen.ross@desertmetals.com.au

Kristin Rowe - NWR Communications Investor Relations

> P +61 0404 889 896 E kristin@nwrcommunications.com.au

About Desert Metals Limited

Desert Metals Limited is an ASX-listed (ASX:DM1) mineral exploration and development company. DM1 has the right to earn a majority interest under low-cost joint venture arrangements in seven gold and lithium projects covering 2,769km² of granted mineral permits and permit applications in Côte d'Ivoire, West Africa. DM1 currently owns 51% of the Tengrela South project 30km south of the operating Sissingue gold mine and is earning 80% of the highly prospective Adzope gold project. DM1 also has a variety of nickel, copper, and base metal-focused projects in the Narryer Terrane of the northwest Yilgarn Craton and, high-grade Rare Earth Elements (REEs) and Platinum Group Elements (PGEs) at its Innouendy Project in Western Australia.

Competent Persons Statement

The information in this announcement that relates to Exploration Results is based on, and fairly represents, information and supporting documentation prepared by Stephen Ross, a competent person who is a Member of The Australasian Institute of Mining and Metallurgy. Mr Ross has a minimum of five years' experience which is relevant to the style of mineralization and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves. Mr Ross is a related party of the Company, being a Director, and holds securities in the Company. Mr Ross has consented to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

Disclaimer

Some of the statements appearing in this announcement may be in the nature of forward-looking statements. You should be aware that such statements are only predictions and are subject to inherent risks and uncertainties. Those risks and uncertainties include factors and risks specific to the industries in which DM1 operates and proposes to operate as well as general economic conditions, prevailing exchange rates and interest rates and conditions in the financial markets, among other things. Actual events or results may differ materially from the events or results expressed or implied in any forward-looking statement. No forwardlooking statement is a guarantee or representation as to future performance or any other future matters, which will be influenced by several factors and subject to various uncertainties and contingencies, many of which will be outside DM1's control. DM1 is not obligated to update publicly or release any revisions to these forwardlooking statements to reflect events or circumstances after today's date or to reflect the occurrence of unanticipated events. No representation or warranty, express or implied, is made regarding the fairness, accuracy, completeness or correctness of the information, opinions or conclusions contained in this announcement. To the maximum extent permitted by law, none of DM1, its directors, employees, advisors, or agents, nor any other person, accepts any liability for any loss arising from using the information contained in this announcement. You are cautioned not to place undue reliance on any forward-looking statement. The forward-looking statements in this announcement reflect views held only as at the date of this announcement. This announcement is not an offer, invitation or recommendation to subscribe for, or purchase securities by DM1. Nor does this announcement constitute investment or financial product advice (nor tax, accounting, or legal advice) and is not intended to be used for the basis of making an investment decision. Investors should obtain their own advice before making any investment decision.

	Table 2 – Adzope diamond drilling collar locations						
Hole ID	Prospect	Easting	Northing	RL	Dip	Azimuth	Depth
		m	m	m	o	o	m
24ADDD001	King Kong	428522	675130	125	-50	320	200.5
24ADDD002	King Kong	428454	674960	140	-50	320	204.5
24ADDD003	King Kong	427895	675021	131	-50	320	38.4
24ADDD003A	King Kong	427896	675024	130	-50	320	132
24ADDD004	King Kong	425526	674299	114	-50	320	200
24ADDD005	King Kong	425595	674360	131	-50	320	200
24ADDD006	King Kong	426534	674991	116	-50	330	203
24ADDD007	King Kong	425519	674384	115	-50	65	336
24ADDD008	King Kong	424695	674221	101	-50	310	200

Grid System WGS 84 30N

Tabl	le 3 –King Kong si	ignificant intercep	ots 1m and above	at 0.5g/t gold cu	t off
Hole ID	From m	To m	Thickness m	Grade g/t	Grams/metres
24ADDD001	28	29	1	7.39	7.39
24ADDD001	35	36	1	0.87	0.87
24ADDD001	63	64	1	0.57	0.57
24ADDD001	78	79	1	0.7	0.7
24ADDD002	200	201	1	0.64	0.64
24ADDD003	35	38.4	3.4	1.73	5.88
24ADDD004	55	56	1	1.38	1.38
24ADDD004	67	71	4	1.14	4.56
24ADDD004	87	89	2	1.48	2.96
24ADDD005	39	40	1	1.9	1.9
24ADDD005	50	51	1	4.2	4.2
24ADDD005	76	77.5	1.5	4.65	3.1
24ADDD006	127	129	2	4.12	8.24
24ADDD006	146	159	13	1.64	21.32
Including	151	155	4	3.76	15.04
24ADDD006	162	163	1	1.04	1.04
24ADDD006	168	169	1	0.66	0.66
24ADDD007	65	66	1	1.40	1.40
24ADDD007	211	212	1	1.49	1.49
24ADDD007	216	217	1	0.50	0.50
24ADDD007	228	231	3	0.39	1.17
24ADDD007	256	259	3	0.99	2.97
24ADDD007	262	279	17	7.50	127.5
Including	262	267	5	23.1	115.5
24ADDD008	61	62	1	4.17	4.17
1m significant intercepts were calculated using a 0.5g/t gold cut-off					

Appendix - JORC Code, 2012 Edition

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as downhole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representativity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1m samples from which 3kg was pulverised to produce a 30g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	Diamond drill core was sampled as half core following sawing/splitting of the core evenly in half. The same side of the core (top half) was consistently sampled to avoid any sampling bias. Samples were based on 1m intervals in fresh, and occasionally slightly more in oxide material if recovery was significantly reduced. The unsampled half core has been kept on-site for future reference / back-up. QAQC samples consisting of certified blanks (2% of samples), certified standards (2% of samples) and duplicates (2% of samples) were inserted into the sample run. For the insertion of duplicates, half core (instead of quarter core) was submitted to the lab. Following crushing by the lab, the crushed material was evenly split into 2 samples for assay: the original sample and its duplicate. This approach avoids variation in assay values arising solely out of drill core heterogeneity.
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc.).	Diamond drilling (DD) was carried-out by Easy Drill SARL Cote d'Ivoire using a Nock 800 man-portable hydraulic diamond drill rig in accordance with industry standard techniques and procedures. Oxide material was drilled with HQ triple-tube, and fresh material was drilled with NTW, which is slightly larger in diameter than standard NQ / NQ2 core. All fresh core was oriented were possible using an ACTIII tool. Downhole surveys were taken approximately every 50m.

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	Core recoveries were calculated by measuring the length of core returned versus drill run interval.
	Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have	In general, recovery was typically very good but with some localized moderate core loss in the oxide zone. HQ triple tube was used in oxide material to minimize core loss. In oxide material and broken zones, smaller runs were drilled.
	occurred due to preferential loss/gain of fine/coarse material.	All holes targeted mineralization in fresh rock, and thus any core loss in the oxide zone would have had a negligible impact upon the assay results.
		No significant sampling issues were encountered.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	Drill core was marked-up (orientation line, cut line and meter marks) at the rig and recoveries recorded. Following this, geotechnical and geological logging was performed. Geotechnical logging consisted of RQD, core appearance, the number and orientation of open fractures, and a surface condition rating evaluation. Geological logging recorded the lithology and its regolith overprint, as well as hydrothermal alteration, mineralization, veining and structural evaluation and measurements. All core was photographed as both wet and dry core.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	Diamond drill core was sampled as half core following sawing/splitting of the core evenly in half. The same side of the core (top half) was consistently sampled to avoid any sampling bias. Samples were based on 1m intervals in fresh, and occasionally slightly more in oxide material if recovery was significantly reduced. The unsampled half core has been kept on-site for future reference / back-up. QAQC samples consisting of certified blanks (2% of samples), certified standards (2% of samples) and duplicates (2% of samples) were inserted into the sample run. For the insertion of duplicates, half core (instead of quarter core) was submitted to the lab. Following crushing by the lab, the crushed material was evenly split into 2 samples for assay: the original sample and its duplicate. This approach avoids variation in assay values arising solely out of drill core heterogeneity.

Criteria	JORC Code explanation	Commentary
		In fresh rock, NTW gauge core was drilled which is slightly larger in diameter than NQ/NQ2 core, thus resulting in greater sample representation.
		Samples were assayed using the Photon Assay technique at Intertek Tarkwa (Ghana) which uses 500g of sample material, thus ensuring excellent sample representativity. Furthermore, only sample crushing (and not further pulping) is required with this technique, lowering the risk of sample contamination during the sample preparation stage.
<i>Quality of assay data and laboratory tests</i>	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures	Assaying was undertaken by Intertek Tarkwa (Ghana) by the Photon Assay method in accordance with standard industry techniques and procedures. In addition to the company QAQC samples, the laboratory also insert their own QAQC samples and perform repeat analyses. No QAQC issues were encountered.
	adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	
<i>Verification of sampling and assaying</i>	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	Both the company and laboratory QAQC samples were within acceptable tolerances with no QAQC issues encountered.
Location of data points	Accuracy and quality of surveys used to locate drillholes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used.	All drill collars were recorded using a handheld Garmin GPS, accurate to within 3m. The orientation of all drill holes was determined using a downhole survey tool with readings taken approximately every 50m. The depth of the samples was recorded; thus the location of every sample is highly constrained in X, Y and Z space.

Criteria	JORC Code explanation	Commentary
	<i>Quality and adequacy of topographic control.</i>	
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	Drilling was conducted as 1 st pass reconnaissance drilling, thus line / hole spacing is irrelevant at this stage.
<i>Orientation of data in relation to geological structure</i>	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	Drillholes were oriented (dip and azimuth) to be as close to perpendicular as possible to the mineralization being targeted. All drill holes except for 24ADDD007 were drilled at -50° towards 320° (±10°). 24ADDD007 was drilled at -50° towards 065° in order to test interpreted circa. north-south structures.
Sample security	<i>The measures taken to ensure sample security.</i>	All drill samples were securely kept on camp and sent to the lab on a hole-by-hole basis by company vehicles.
Audits or reviews	<i>The results of any audits or reviews of sampling techniques and data.</i>	Not applicable.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
<i>Mineral tenement and land tenure status</i>	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	The 229km ² Adzope Concession (PR-960) was granted on 26th June 2024 to Ivorian company, African Ressources SARL. DM1, through its 100% owned entity CDI Minerals Pty Ltd entered into a JV with the permit holder on the 5 June 2023. DM1 can earn up to 80%. There are no impediments to working in the area. Compensation is paid to local land holders for tree/crop disturbance and local villagers are regularly engaged to provide a range of field services to DM1.

Criteria	JORC Code explanation	Commentary
<i>Exploration done by other parties</i>	<i>Acknowledgment and appraisal of exploration by other parties.</i>	Minor historical work has been conducted by unidentified companies in the past, however none of that data (thought to be stream sediment sampling) has been located to date. The government also has some limited geological reports on the area, and regional stream sediment sample data largely carried-out in the 1950's and 1960's.
Geology	<i>Deposit type, geological setting and style of mineralisation.</i>	The Adzope concession (PR-0960) is located on regional-scale NE-SW oriented structure that appears to be a parallel extension of the Sefwi greenstone belt in neighbouring Ghana, home to the Ahafo camp goldmines of Newmont, endowed with more than 15 million ounces of gold reserves. Host rocks at Adzope are largely fine-grained metasediments and metavolcanoclastics, with gold hosted in quartz veins and in the vein selvedges.
<i>Drillhole Information</i>	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drillholes: easting and northing of the drillhole collar elevation or RL (Reduced Level - elevation above sea level in metres) of the drillhole collar dip and azimuth of the hole downhole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	No historical drilling has ever been performed on this permit to the knowledge of DM1. DM1 maintains a database containing all recorded geological and drillhole meta-data. Drill hole details (locations and hole orientations) are provided within.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cutoff grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high- grade results and longer lengths of	Not applicable.

Criteria	JORC Code explanation	Commentary
	low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	
<i>Relationship between mineralisation widths and intercept lengths</i>	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drillhole angle is known, its nature should be reported. If it is not known and only the downhole lengths are reported, there should be a clear statement to this effect (e.g. 'downhole length, true width not known'). 	Drillholes were oriented (dip and azimuth) to be as close to perpendicular as possible to the mineralization being targeted. All drill holes except for 24ADDD007 were drilled at -50° towards 320° (±10°). 24ADDD007 was drilled at -50° towards 065° to test interpreted circa. north-south structures. All mineralized intervals reported herein are downhole lengths as true mineralization widths are not yet known.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drillhole collar locations and appropriate sectional views.	Appropriate diagrams and tabulations relevant to material results are included in the body of the announcement.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	No historical drill data available to provide more context.
<i>Other substantive exploration data</i>	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Not applicable.

Criteria	JORC Code explanation	Commentary
Further works	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Auger drilling will be conducted to rapidly evaluate more extensive targets prior to subsequent focused diamond drilling. Dipole-dipole IP will be undertaken over selected sections of the previously defined gradient array IP anomalies, and a further program of gradient array IP will be carried-out along strike to the southwest of the King Kong prospect. Regional stream sediment sampling will also be conducted over the entire permit.